On minimum locally $n$-(arc)-strong digraphs
نویسندگان
چکیده
منابع مشابه
A classification of arc-locally semicomplete digraphs
Tournaments are without doubt the best studied class of directed graphs [3, 6]. The generalizations of tournaments arise in order to extend the well-known results on tournaments to more general classes of directed graphs. Moreover, the knowledge about generalizations of tournaments has allowed to deepen our understanding of tournaments themselves. The semicomplete digraphs, the semicomplete mul...
متن کاملSupereulerian Digraphs with Large Arc-Strong Connectivity
Let D be a digraph and let λ(D) be the arc-strong connectivity of D, and α′(D) be the size of a maximum matching of D. We proved that if λ(D) ≥ α′(D) > 0, then D has a spanning eulerian subdigraph. C © 2015 Wiley Periodicals, Inc. J. Graph Theory 81: 393–402, 2016
متن کاملMinimum Cost Homomorphisms to Locally Semicomplete and Quasi-Transitive Digraphs
For digraphs G and H , a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then the cost of a homomorphism f is ∑ u∈V (G) cf(u)(u). For each fixed digraph H , the minimum cost homomorphism problem for H , denoted MinHOM(H), can be formulated as follows: Given an input di...
متن کاملMinimum Cost Homomorphism Dichotomy for Locally In-Semicomplete Digraphs
For digraphs G and H , a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). In the minimum cost homomorphism problem we associate costs ci(u), u ∈ V (G), i ∈ V (H) with the mapping of u to i and the cost of a homomorphism f is defined ∑ u∈V (G) cf(u)(u) accordingly. Here the minimum cost homomorphism problem for a fixed digraph H , denoted by MinHOM...
متن کاملMinimum cost homomorphisms to locally semicomplete digraphs and quasi-transitive digraphs
For digraphs G and H, a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then the cost of a homomorphism f is ∑ u∈V (G) cf(u)(u). For each fixed digraph H, the minimum cost homomorphism problem for H, denoted MinHOM(H), can be formulated as follows: Given an input digra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1996
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1996.127293